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ABSTRACT

 The space borne Moderate Resolution Imaging Spectroradiometer (MO-
DIS) instrument was designed as the leading edge of global observation technol-
ogy.  The MODIS instrument and later follow-on satellite sensors (e.g., NPP, 
VIIRS) represent the best technology for further observations of global change, 
land use/land cover change, and for global mapping.  However, the value of 
MODIS data for these applications has been limited because of its short history.  
The satellite sensor that serves as the precursor to MODIS is the Advanced Very 
High Resolution Radiometer (AVHRR).  The USGS National Center for Earth 
Resource Observation and Science (EROS) has an archive of AVHRR data cov-
ering the conterminous United States dating from 1989 to the present.    
 Using the year 2003 where we have data from both sensors, we investigated a 
method to transform the heritage AVHRR data to a form useful for comparison 
with the MODIS data.  This will allow for comparative studies, such as climate 
and environmental change, which require the long history of AVHRR data with 
the current and future data supplied by MODIS.  
 We have found that a simple linear regression does not appear to provide an 
accurate transform between the sensors.  In addition, it has been observed that 
divisions by land type, position in the season, and geographical area need to be 
addressed for accurate comparisons.  Within the data, we have seen some obvious 
problems with heteroskedasticity, and suspect that the data could be cross-sec-
tional in nature to account for the reported variance.  

INTRODUCTION

 The use of remote sensing has continued to increase over the past decade 
as increasingly advanced technology becomes available to give more accurate 
measurements and faster evaluation times of current seasonal data.  One of the 
most widely used sets of data from remote sensing sensors has been the Normal-
ized Difference Vegetation Index (NDVI).  NDVI is routinely calculated using 
the visible and near infrared light spectrum acquired by satellite sensor data.  
Until recently, the data has been collected using the NOAA Advanced Very 
High Resolution Radiometer (AVHRR) series satellites.   As these satellites have 
begun to age, a new set of sensors have been created to give better measurements 
and higher resolutions.  The sensor that will be used to replace AVHRR is the 
Visible/Infrared Imager/Radiometer Suite (VIIRS).  While this sensor has not 
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been put into production yet, the VIIRS sensor will be very similar to the NASA 
Moderate Resolution Imaging Spectroradiometer (MODIS) sensor.  
 Many studies have used the long history of NDVI data that has been col-
lected from the AVHRR sensor [11], [10], [9], [17], and [19].  A number of 
these studies have used the almost twenty years worth of sensor data to monitor 
changes in both vegetation and a variety of land surface properties.  Being able to 
understand how current AVHRR derived NDVI and current and future sensor 
derived NDVI data relate is crucial to being able to allow future long term trend 
analysis studies to continue.

PROJECT BACKGROUND

Background

 A small number of studies have previously compared observed and simulated 
MODIS and AVHRR data ([1], [4], [5], [8], [13], [18]), which have provided 
varied results, mainly in support of high correlation values between cross sensor 
evaluations.  Gitelson, et. al, shows that MODIS NDVI values are slightly greater 
than those from AVHRR in simulated data from the red and near infrared (NIR) 
bands [3].  In addition, Gallo et. al ([4], [5]) both found that MODIS NDVI 
data has shown good agreement with other sensor NDVI data when properly 
corrected for water vapor, ozone, Rayleigh scattering, and other atmospheric 
conditions in a manner discussed by [12] and [16]. There is evidence that there 
is a poor correlation between the NOAA-14 AVHRR satellite and the MODIS 
Terra sensor [2].  However, while the NOAA-14 and NOAA-15 satellite showed 
poor correlation, the NOAA-16 satellite has a slightly adjusted range of bands 
that are used to determine NDVI, which should allow for a better correlation 
[18]. 
 Many of the studies have used simulated data rather than actual data in order 
to avoid the atmospheric and other sensor based problems that exist within satel-
lite image data.  The majority of these studies have found that there is a strong 
linear relationship between the two sensors.  In particular, Steven et. al has noted 
that the reflectance for spectral band effects can be corrected to approximately a 
value of plus or minus 0.02 [13].  To deal with the effects of satellite images that 
simulated data does not factor in, it appears that topography, solar angles, and 
viewing angles have a contribution to the differences between satellite data [13].  
One problem with the data is the problem of geo-registration (not being able 
to accurately map the data to the same locations) [18].  Further, AVHRR and 
MODIS NDVI values can vary with land cover type, simply by observation of 
the data sets, and noted that correctional algorithms should take the land cover 
differences into account [4].   

Initial Hypothesis

 The initial regressions were created under the hypothesis that the differences 
between the AVHRR and MODIS sensors were a result of the general differences 
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between sensors, including spectral band differences and time of day, as well as 
the contamination based on clouds.  It was also believed that there may be a gen-
eral link between sensor differences among different types of land cover classes.  
Under some brief exploration of data sets, our hypothesis shifted to include some 
type of correction for approximate time of season. 

Comparison Data Setup

 Our study compares four satellite sensors. Two satellites, N16 and N17, use 
the AVHRR sensor; the other two satellites, AQUA and TERRA, use the MO-
DIS sensor.  We use a piece-wise linear regression technique to compare the data 
from these sensors.
 We classify the data by land cover type and the 16-day composite obser-
vation number.  The land cover type was determined from the adjusted 1992 
NLCD land cover map [19].  The land cover classes we use are: deciduous forest, 
evergreen forest, mixed forest, grassland and herbaceous, shrub land, row crops, small 
grains, pasture and hay, residential and commercial, water and ice, and the generic 
other.  This study extends Gallo’s work, which examined the first nine classes, as 
water and ice have many notable problems with NDVI values being artificially 
low [5].  In addition, the land cover classified as the “other” category defines too 
broad of a region to be useful in making an accurate evaluation. 
 The compilations of the data sets were done in two ways.  The first was to use 
a pixel to pixel comparison using images of the US.  In total the comparison used 
13,251,843 points per composite, which was divided into the eleven land type 
groupings.  While this comparison is ideal in the comparison of data, a number 
of issues, such as accuracy problems with the land type map, geo-registration 
problems, as well as artificially low data point values due to image contamina-
tion, led to the use of the second data set aggregation.   The second compilation 
of the data set used 20km by 20km sample sites located around the United 
States where the contents of the sample is 80% or greater of one land type.  Each 
sample was averaged, using only the pixels that according to the modified NLCD 
land type map were of the dominant land type.  The averaging also removed the 
effects of cloud- and water-masked pixels.
 One issue within the data set is that the N16 satellite began to fail midway 
through the 2003 data year (at image observation number 16), resulting in an 
incomplete year of data for comparison between the four different satellites.  In 
the regression analysis, all depictions of N16 are used through the last good date 
of N16 to gain full value of the regression values.  Unfortunately, due to the 
failure, there is only a limited amount of data between N16 and the Aqua satel-
lites.  The 2003 data year was chosen as it provides the greatest amount of data 
between N16 and Aqua allowing for the maximum number of data comparisons 
in one season. 

Running Regressions

 In order to use the statistical package SAS, each land cover type was divided 
into a separate file that was ordered by seasonal composite image number.  These 
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groupings from each image were then sequentially linked together to allow for 
data evaluation.
 The particular regressions that were run were simple ordinary least squares 
first order linear regressions.  Under our initial hypothesis, the differences be-
tween the two data sets were dependent on the differences between the sensors, 
which should affect all data equally and should be easily corrected based on some 
simple linear regression.  In addition, some work completed by Kevin Gallo at 
the National Center for EROS suggested that there may be explainable differ-
ences between land cover types [5].  Following this, we divided the data into 
nine divisions, using the modified NLCD map and omitting the water and bare 
rock/sand/clay land covers.  As we worked further into the project, it became ap-
parent that the inability to accurately geo-register the satellite images pixels to the 
correct latitude and longitude position was creating problems with regressions 
analysis.  To solve this, another program was used to extract sample areas with 
large coverage of the desired land cover class and average a twenty by twenty pixel 
area.  
 We then ran regressions in SAS and the open source program Gretl accord-
ing to the seasonal observation number on all of the data set combinations, as 
well as doing an inclusive land type regression dismissing the observation num-
ber on all sample sites.  The observation numbers discussed in the article refer to 
the time offset from the beginning of the year based on 23 composite observa-
tions in one year.  No corrections were done in the techniques to solve problems 
with heteroskedasticity and no correlation problems appeared in the data sets.

DATA RESULTS

 The results from the regressions have shown to be very troublesome in some 
areas of the data.  As a general rule, land types one and three (deciduous and 
mixed forests) were the most troublesome of the nine evaluated land cover classes.  
In addition, there appears to be a seasonal trend that is portrayed in the adjusted 
R2 as well as the coefficient and the intercept.  It should also be noted that as 
the NDVI values increase and reach the peak of the growing season, usually in 
the middle of the season around observations 10-12, there is a greater chance for 
large NDVI deviations between satellites to occur.  In evaluation of the R2 on all 
combinations, running a regression on all 16-day composite samples of the same 
land type resulted in R2 values between .7 and .95 in addition to matching the 
hypothesized sign and approximate value of the coefficient.
 Based on the initial hypothesis, a linear regression was chosen to be the first 
model structure.  It was estimated that the intercept should occur between -0.2 
and 0.2, with a positive slope.  The data would be piece-wise as well, allowing for 
slope changes between 16-day composites.  However, in the plotting of the data 
without separation for observation number, it became apparent that using either 
a squared regression or a higher polynomial function may offer more explanation 
between the combinations of sensors.  The plots presented in the next section of 
the paper also offer some other insights into potential differential factors in the 
data as well.  
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Common Features

 The following basic plot charts were created using pairs of sensors (with 
MODIS sensor on the vertical axis, and the AVHRR sensor on the horizontal 
access).  The plots were done according to the dataset and the land cover type 
number.  A general trend is evident in most of these plots.  In examining all data 
points together, there is a definite general data comparison line; however, there is 
also a large amount of deviation from the regression line as shown in figure 1. 
 

 In simply separating the data into forest and non-forest, the data shows 
characteristics based on land cover.  In general, there is a “floor” on all data 
derived from the non-forest land areas, and a “ceiling” on all forest land areas.  
The differences can be seen in figure 2 and figure 3.  In addition to identifying 
which land cover in general has the “floor” and “ceiling” effects, the data also 
has a considerably smaller amount of variation, due to specifying the forest and 
non-forest samples.  This ability to improve our results by splitting the data 
suggests that there could be further gain from analyzing the different land cover 
types separately.  Examining the data plots, it also is interesting to see that even 
though the regression lines plotted over the data points are different, if we could 
remove the problem areas of the data, it may be seen that the other factors such 
as seasonality may be involved in determining the makeup of the general com-
parison of the data calibration.  To begin breaking apart these data sets, these 
simple relations were first broken into the nine land cover classes to be evaluated 
separately.  

Figure 1. All land cover and observations.  Notice the general trend line evident in the data.  
However, there is also a great deal of scatter.  While a regression offers a relatively high R2, the 
amount of variation limits the ability of the regression to explain the sensor differences by com-
bining all observations together.  
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Figure 2. All forest land cover, all observations, with the ceiling effect visible, but the floor effect 
missing, suggesting that the lower saturation level on the MODIS based sensor exists in the non-
forest land cover.  We also note that the non-scattered and non ceiling saturated data represents 
a very similar data plot to the non-forest land covers.  This suggests that there may be other com-
mon factors to these two data sets, such as seasonality which should be accounted for.

Figure 3. All Non-forest land covers for all observations.  Notice the floor effect is present, but 
the ceiling effect is missing from this data.  We notice especially that while a floor effect exists 
heavily on the MODIS sensor at the 0 NDVI level, it also exists on the AVHRR sensor around the 
0.2 NDVI level.  We also note the similar characteristics as noted on Figure 3-2.
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Growing and Non-Growing Season

Deciduous Forest

 In the Deciduous Forest land cover class, as shown in figure 4, a distinct 
discontinuity in the data values appeared.  In the lower ranges of AVHRR (under 
0.4 NDVI), there is a large scatter of the MODIS points from 0 NDVI to 0.7 
NDVI.  However, there also appears to be a strong relationship of the sensors 
between 0.35 NDVI to 0.6 NDVI in the AVHRR sensor and 0.37 NDVI to 
0.63 NDVI in the MODIS sensor.  However, at 0.6 NDVI in AVHRR and 0.7 
NDVI in MODIS there appears to be a discontinuity.  It also appears that there 
is a “ceiling effect” occurring at 0.9 NDVI on the MODIS sensor.  Looking at 
figure 4, it becomes clear that there are two separate regions, a lower region with 
a typical slope and an upper region with a less steep slope.

   This occurrence could suggest that there may be an additional dimension 
that needs to be accounted for, such as geographic region.  However, under 
further analysis, we see that the data is broken into at least two of sections, as 
can be seen in figure 5 and figure 6.  These figures show that simply breaking 
the image into parts of the growing season result in greater grouping of the data.  
However, in breaking the data into these two groups, the models have a relatively 
low explanation factor, with an R2 of approximately 0.78 for the off-growing 
season and 0.34 for the growing season.  This is a large drop considering the full 
deciduous forest model R2 is approximately 0.88.

Figure 4. Deciduous Forest N17 vs. Terra – All Observations.  Two separate regions appear in the 
data plot of the deciduous forest land cover.  The lower portion has a great deal of scatter on the 
AVHRR sensor from 0.1 to 0.4 NDVI, while the MODIS sensor has a ceiling effect around a 0.9 
NDVI.  The R2 for the regression is 0.88, which may be artificially boosted due to the large number 
of samples used for the regression.
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 In figure 5 there is also ambiguity between the two sensors in the N16 0.1 
to 0.3 NDVI ranges.  In examining the individual plots from the data, these 
values are caused by Observations 2, 3, and 21 of the given year.  This could be 
possibly explained with respect to snow and ice reflection, as well as cloud shad-
ows or other sky clarity and atmospheric issues that have not been detected and 
accounted for in the cloud or snow mask.

Figure 5. Deciduous Forest Observations 1-9. These observations make up the non-growing season.  
It is easily noticeable that the regression follows a regression line that has a reasonable slope and 
intercept.  Interestingly below 0.4 NDVI there is a great deal of variation between the two sensors.  
However, above 0.4 NDVI, there appears to be a well behaved data correlation.

Figure 6. Deciduous Forest Observation 10-16.  The growing season for the deciduous forest ap-
pears to be a much higher regression combination, possibly due to a sensor saturation with the 
MODIS NDVI calculation.  There also appears to be a set of points that are considerable outliers 
that may be a result of mis-classified data points of low-NDVI growing seasons.
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 The explanation of this reduction could also be in part due to the number of 
observations used in each regression model.  Since there are close to 2000 points 
in the full regression, the R2 is artificially boosted, giving an inflated value which 
will decrease when reducing the number of observations in a set. 

Evergreen Forest

 The evergreen forest did not appear to have a distinct break, as seen in the 
deciduous forest.  However, it did become apparent that there is a greater varia-
tion between the data points as well as possibly a quadratic relationship.  It is 
interesting to note that the N17 sensor combined with either MODIS sensor 
had a smaller root mean squared error (RMSE) as well as having a higher R2.  
The most noticeable difference between the N17 and Terra comparison is the 
scattering of data points above the main concentration, as seen in figure 7.

 In breaking this image apart, we see two distinct time regions.  Observations 
1-9 and 19-23, which has a larger standard error (0.015), lower R2 (0.657) and 
show the non-uniform parts of the graph (figure 8). Observations 10-18 however 
have a nice distribution and offer a high R2 (0.888) and an even lower standard 
error (0.009) (figure 9).
  

Figure 7. Notice the higher polynomial curve shape of the concentrated data points.  In addition, 
a peculiar trend showing more variation on the high Terra, low N17 side than on the opposite 
side.
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Figure 8. Evergreen Forest Observations 10-18   The growing season for this forest appears to be 
well behaved and have little residual data points with large variations.  There are a few samples 
with low NDVI values on the AVHRR sensor, however, the split to the growing season offers a great 
deal of explaination between the two sensors.

Figure 9. Evergreen Forest Observations 1-9 and 19-23.  The non-growing season in comparison 
to the growing season has a greater variation.  It is obvious that there is something that occurs 
in the early and late part of the season which needs to be accounted for.  This could be a result 
of residual clouds not detected by the CLAVR cloud mask, or other atmospheric contamination 
or snow and ice contamination.
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Mixed Forest

 The mixed forest is difficult due to a relative lack of data points.  In the 
N17 vs. MODIS, there were approximately 550 data points, and 367 points 
in the N16 vs. MODIS comparison.  The N16 vs. MODIS comparisons were 
fairly straightforward.  The N17 vs. MODIS comparisons (Figure 10), however, 
resulted in a similar effect as the evergreen forest observations 10-18 (figure 9).  
The overall data plot shown in Figure 10 appears to be a cross between the char-
acteristics of both the deciduous forest, with a discontinuous regression, and the 
increased scatter found within the evergreen forest.  With the smaller amount 
of data, the problems could simply be a result of a lack of data observations to 
successfully determine the variations from the actual data points. 

Grasslands / Herbaceous

 The Grasslands land cover type offers another problem.  In all of the samples, 
it appears that at low levels of NDVI, the MODIS sensor measures NDVI at 
approximately 0, but the AVHRR sensor shows a scattered range between 0 and 
0.2.  This could be due to snow and clouds (as the difference is occurring at very 
low levels of NDVI), typically found during winter months.  
 The low levels can be seen by combining observations 1 through 6 and 19 
through 23.  As depicted in Figure 11, the floor effect occurs in the off-season.  
While there is still a considerable amount of good data points in this particular 
non-growing season, there is a significant problem with these off-growing season 
observations.  The resulting growing season then lacks any floor effect and has 
minimized scatter (figure 12).  

Figure 10. Mixed Forest all observations.  This land cover has features which appear to be a cross 
between the deciduous and evergreen forest land cover classes.  Due to the relative lack of data 
points, it is difficult to derive any solid deductions on this data set.
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 Evaluating the standard ordinary least squares method, it was observed that 
the floor effect, occurring within the non-growing portion of the season, has an 
R2 of .687 while the growing season has an R2 of .912.  This offers a promising 
method for correcting off-season and on-season data with a great improvement 
for the growing season as the R2 of the entire season for the fourth land cover is 
.852.

Figure 11. Grasslands/Herbaceous Non-Growing Season Observations 1-6 and 19-23.  The off-
growing season of the grasslands contains a large floor on MODIS values that range from 0 
to 0.4 NDVI (based on AVHRR), which may be a result of snow, clouds, or other atmospheric 
contamination.  The upper regions of the data are well-behaved, and follow a regression line 
relatively well.

Figure 12. Grasslands/Herbaceous Growing Season Observations 7-18.  The growing season of the 
grassland offers a promising comparison between the two sensors, as the data plot follows the 
regression line relatively closely, having an R2 of 0.92. 
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Shrub land

 Similar to the other non-forest land cover classes, the data has relatively little 
data scatter.  Without any time-of-year separation to the data, the regression has 
a relatively high R2 at 0.88 (figure 13).  However, the shrub land does not clearly 
separate into a season and off-season.  While the same floor is visible within 
the data to a smaller degree, the primary contributors are the first four observa-
tions.

 One possible way to better explain these data would be to employ a piece-
wise regression technique.  Basically, instead of only splitting the data by grow-
ing- and non-growing season, this technique groups the data by composite obser-
vation number.  These smaller data sets are then evaluated in a linear regression 
technique with the hopes of avoiding any problems that exist due to changes in 
conditions as a result of different time different sun angle, and other factors that 
occur with different times of the year.  These individual regressions can then be 
examined to see if any pattern exists of if there exist condition changes between 
growing and non-growing times of the year.
 In examining the piece-wise regressions, we find no clear observable pattern 
of the data. By examining the intercept of the regression line, we can observe 
trends for both within- and outside the growing season.  As shown in table 1, 
the later observations within the growing season (periods 11-16) tend to have a 
similar intercept. Evaluation of these six periods in the later growing season (fig-
ure 14) reveals a more uniform data set compared to the whole growing season 
(figure 15).  An R2 of 0.93 shows that this smaller period correlates better..  

Figure 13. Shrub land: Total Season Observations 1 – 16.  The shrub land is difficult to divide into a 
season and non-season data set.  There is relatively little variation between the two sensors, and 
the small floor that appears on the MODIS sensor is barely recognizable.
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 It is difficult to create an explanation for the change in behavior of this land 
cover.  However, because of the small number of observations (just over 60 per 
time period), it is possible that there may not be completely accurate representa-
tions due to water vapor or other factors that may occur at more frequently at 
certain times of the year, which are adjusted by the MODIS sensor but not by 
the AVHRR sensor.

Table 1. Shrub land: Slope-Intercept Table sorted by Intercept.  This table is an example of the 
intercepts and slopes obtained  using a piece-wise regression.  While the R2 on all of these re-
gressions was low, it was largely due to a lack of data points.  By examining the intercepts and 
slopes, we can pick out observations that are approximately from the same time, which we 
would expect may have a common seasonal shape.

OBSERVATION INTERCEPT SLOPE

12 -0.51 1.04
13 -0.0661 1.08
16 -0.062 1.07
14 -0.0429 1.03
11 -0.0392 1.07
15 -0.0371 0.987
3 -0.0207 1.12
1 0.002 1.07
8 0.0038 1.01
7 0.00875 0.96
2 0.0105 0.996
4 0.0116 1.02
9 0.0121 0.942
6 0.0163 0.936
5 0.0219 0.974

10 0.0243 0.908
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Figure 14. Shrub land: Late Growing Season 11-16.  Using a piece-wise regression technique, we 
found a set of observations that appear to have a relatively close fit together.  Since we were 
using all late growing-season observations, it may be possible that the correlation between data 
points may also have a factor dealing with green-up or green-down parts of the growing-sea-
son.

Figure 15. Shrub land: Growing Season 9– 16.  Compariablly to the late growing season, this shows 
a “dual” set of data points.  However, this may also be impacted by different seasonality dates, 
depending on where the data point is located.
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 The off season (figure 16) also should be noted as having a similar R2 (0.91) 
to the complete growing season.  However, as shown in table 1, there is not a 
clear pattern showing the lead-up to the season.  Instead what we see is a range 
of intercepts from 0.002 to 0.0243.  This variation along with the variation of 
slopes suggests that there are some other factors involved other than time of 
season.

Row Crops 

 Row Crops typically attain higher levels of NDVI during the growing sea-
son, but otherwise behave similarly to the other non-forest land cover types.  
While these values do not exhibit the same drastic ceiling behavior found in the 
forest land covers, it is possible that this effect could be observed during years of 
extremely high growth.  
 Figure 17 illustrates two areas of concern. The first is the floor values that oc-
cur along with the high amount of scatter in the lower NDVI range.  The second 
concern is that the data appears to be related under a higher order polynomial.  
While these areas lower the regression explanation, the R2 maintains itself above 
0.91.

Figure 16. Shrub land: Non-Growing 1-8.  The non-growing season is held to a minimal variation, 
however, it does have a small floor on the MODIS NDVI values, as well as have a slight spread 
between the 0.1 NDVI AVHRR and 0.35 NDVI AVHRR.  This suggests that there may be other fac-
tors that lead into the explaination other than growing/non-growing season evaluation.
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 Breaking the season into the growing and non-growing sections, there is 
clearly a correlation again to the floor effect and the non-growing part of the 
season.  In addition, most of the scatter occurs in the non-growing part of the 
season, as shown in figure 18.  Due to the scatter of the comparison, as well as 
the floor effect of the MODIS sensor, the R2 measures a 0.68 for this off-season 
data.

Figure 17. Row Crops: Entire Season.  The row crop land cover has a unique in that it achieves high 
NDVI levels, as well as low NDVI levels.  While it is not extremely obvious, there does appear to 
be a slight saturation level, as well as a quadratic shape to the data.  Also noticeable is the floor, 
as well as the low NDVI level scatter.

Figure 18. Row Crops: Non-Growing Season: Observations 1 - 8 and 20 – 23.  By using the non-
growing season, we are able to extract the scatter as well as the floor of the MODIS samples.  
There are a few higher NDVI values, which may be a result of misclassifications or early grow-
ing seasons.  Floor values have been shown to be removed by the addition of a snow mask (not 
shown), and improved the regression R2 above the 0.68 from the non-snow masked regression.
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 The growing season for the row crops also has an interesting feature.  The 
data appears to have a non-linear correlation.  The data would suggest that a 
higher order polynomial function may be needed to model the data points.  In 
addition, the data also appears to have a slight ceiling effect, which could also 
be contributing to the need for a polynomial function. Figure 19 shows the data 
with a simple linear regression.  While it is possible that a higher polynomial 
function should be used, the regression does have a rather high rate of explana-
tion (R2 = 0.92).  In addition, the possibility of using piece-wise regression, as 
discussed in a later section, eliminates the need for the higher order function.

Small Grains 

 The last three land cover types provide interesting attributes.  Similar to row 
crops, a slight higher order polynomial function appears in the data comparison.  
Figure 20 shows a linear regression over the entire season for the small grains, 
producing an R2 of 0.93, which is one of the highest regression values we have 
been observed in this study.  However, compared to the other land cover classes, 
we have relatively few observations, only 775 data points for the entire season.  

Figure 19. Row Crops: Growing Season: Observations 9- 19.  The row crop growing season appears 
to have a slight ceiling saturation from the MODIS data, as well as a quadratic shape to the 
data.  This may be in part due to differences within seasonal characteristics; however, the linear 
regression has a relatively high R2 of 0.92.
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 Because of the relatively good linear fit to the data, it was difficult to divide 
the data into any clear separation based on observations.  However, in order to 
eliminate the floor effect data, observations 6 through 19 were separated and 
compared with an R2 of 0.91 (figure 21) and the remaining observations (figure 
22) had an R2 of 0.91.
 One possible explanation for the relatively similar data comparison through-
out the entire season could be the length of the season for small grains.  Because 
small grains have an earlier growing season and have varied lengths of seasons, 
depending on area, it may be difficult to accurately separate the growing/non-
growing season.

Figure 20. Small Grains: Entire Season.  The small grains regressions are limited severely by the 
number of data samples available.  In addition, it is difficult to determine a seasonal difference 
clearly by observation of the data.  This is in part due to the wide variety of crops that are 
planted, which have seasons that overlap, and start very early in the year.  As a result, the seasonal 
characteristics depend largely on what type of small grain is being observed.
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Figure 21. Small Grains: Growing Season: Observations 6 – 19.  Creating a growing season portion 
of the data lowers the R2 value from 0.93 to 0.91, due to the reduction in the number of data 
points.  There is a small amount of variation in the upper NDVI values; however, in general it forms 
a relatively good linear regression line.

Figure 22. Small Grains: Non-Growing Season: Observations 1-5 and 20-23.  The non-growing 
season is much like the growing season, except for an additional floor that occurs around 0 NDVI. 
The 0.91 R2 is the same as the growing season, with a similar range of NDVI values.  This in large 
part is due to the near continuous growing season offered by different types of small grains.  As 
a result, the extremely low values may only last for a short time, suggesting that there is a much 
smaller non-growing season that what has been depicted.
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Pasture Hay

 Compared to the row crop and small grain land cover, pasture hay has a 
greatly reduced correlation between the sensors.  Using the first 16 observations, 
due to N16 sensor failure, figure 23 shows a set of data with a wider spread along 
with a small set of floor pixels with a limited amount of pixels that fall below 0.2 
NDVI.  The R2 for all pasture hay pixels over the sixteen good observations is 
0.81.  

 By dividing the data into the respective parts of the season, we see a drop 
in the R2 values to 0.71 for the non-growing season (figure 24) and 0.75 for the 
growing season (figure 25).  While the regression has a lower R2 value, noting 
visually that there is not a great deal of difference between the three regressions 
suggests that the entire season R2 value was artificially inflated due to the number 
of data points used.  
 Also, in figure 24, the NDVI values reach almost the same levels as the grow-
ing season.  This may be in part due to the geographic location of the data points.  
Examining the location of the sample sites, the pasture hay land cover class pri-
marily runs along the Mississippi river, in a north-to-south fashion.  This land 
cover type has a considerable amount of the sample locations derived from the 
southern part of the U.S., where growth levels do not typically fall to extremely 
low levels.  This could result in high levels of NDVI during the non-growing 
season.
 

Figure 23. Pasture Hay: Entire Season: Observations 1 – 16.  The pasture/hay has greatly reduced 
explaination by linear regression compared to the previous land cover classes.  There is a much 
larger scatter range, as well a more extreme set of floor values that exist.  In addition, there ap-
pears to be some type of non-linear regression involved with the heaviest part of the data plot.
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Figure 24. Pasture Hay: Non-Growing Season: Observations 1-8 .  The non-growing season has a 
relatively high NDVI value.  This may be in large part due to the southern geographic location of 
the data points.  We also expect that because of the geographic location differences between the 
sample locations, the growing seasons may need to be divided in a much more careful manner 
specific to the geographic location.

Figure 25. Pasture Hay: Growing Season: Observations 8 – 16.  The growing season has a much 
less scattered appearance than its non-growing counterpart.  This is largely due to all locations 
having a high NDVI value.  While the R2 of 0.75 suggests that there are other factors involved in 
the regression, in examining the difference between the non-growing season, we see that a closer 
look at starting and ending dates of the season are important.
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Urban

 The urban land, consisting of commercial, industrial and residential areas, 
has a limited number of data points available for comparison.  Due in part to the 
lack of data points, it was difficult to find any explanation between the sets of 
data.  A general explanation line between the sensor data appears to form within 
the data; however, there is a great deal of scatter that could possibly be explained 
by the differences in latitude and longitude of the data areas.  The entire season 
regression (figure 26) only had a 0.67 R2; however, it is obvious that other factors 
are influencing the data.  One possible factor could be the differences between 
geographic locations, as this was not considered in the study. This may be an 
important factor and a possible area for further study of how different locations 
will be affected by the differences of light reflection.

 Especially in the urban areas, there is very limited ability of separating out 
the scatter among different observations.  However, there does appear to be a 
correlation between a few lower floor values and the off-growing season.  Figure 
27 shows the observations during the growing season.  Overall, this collection of 
data points had a R2 of 0.47, which is significantly lower than the entire season.  
However, as was stated earlier, while there is less explanation, the higher R2 value 
could simply be due to more observations.
 Figure 28, shows the non-growing season part of the year, with a R2 value 
of 0.54.  Surprisingly, in this case, the off-growing season has a better regression 

Figure 26. Urban: Entire Season.  The Urban land cover suffers from three problems.  The first 
problem is a lack of data sample sites, resulting in semi-visible regressions.  The second problem is 
that the urban sample areas are scattered around the U.S. and have different lengths of growing 
seasons.  The third complication is that the urban land cover is known to be problematic within 
a growing year due to the wide range variety of areas classified as urban.
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than the growing season.  This could potentially be due to more data points; 
however, it may also be a result of atmospheric conditions, such as smog or 
water vapor, which if one sensor does not correct for, could show greater reduc-
tions, since smog and water vapor tend to be more prevalent during the summer 
months, causing reduced correlation.

Figure 27. Urban: Growing Season: Observations 9-19.  Aside from eliminating the lower NDVI 
values, very little is gained from the separation into a typical growing/non-growing season set 
of data.

Figure 28. Urban: Non-Growing Season Observations 1 - 8 and 20 – 23.  We notice a floor on both 
sensors; however, due to the lack of data points, it is difficult to show how great of an impact the 
floor values have.  In addition, there is extensive scattering, suggesting that some other factors 
must be in play.
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Specific Satellite Features

 Between each of the different satellite sensors, there are a few unique fea-
tures.  In general, the N17 satellite tended to have a greater spread of the data 
points over the N16 satellite.  This tended to make the N16 regressions a bit 
cleaner and gave better explanation between the sensors.  However, due to the 
limited data from the N16 satellite, N17 data was primarily used for demonstra-
tion purposes due to the complete 2003 data set.
 Another consideration when evaluating the data sets is to examine the cross 
calibration of the different satellites.  While this was not a focus of this paper, it 
was interesting to note that while in general the sensors have limited variation, 
the variation between satellites increase in a similar pattern as the calibration be-
tween the AVHRR and MODIS comparisons.  This increase was not of a similar 
magnitude, yet, the comparisons did note a difference in variation in growing 
and non-growing parts of the season.  
 For an example of the evaluation, a comparison of the Aqua and Terra satel-
lites is considered for the Evergreen Forest Land Cover Type. In figure 32, the 
non-growing season is displayed, with a R2 of 0.79.  However, this can be com-
pared with figure 33, which shows a much tighter data set, that has a R2 value 
of 0.97.  While this does not match up to the variation change of the AVHRR 
to MODIS regression, it does show that the analysis of these sensors is based 
on more than a sensor mis-calibration, and there are other factors that could be 
influencing the data.

Figure 29. Aqua vs. Terra: Observations 1-8 and 19-23. Despite these two satellites being of the 
same sensor type, there is a considerable amount of scatter between the data points.  Differences 
between these two sensors may include cloud problems, atmospheric contaminations, as well as 
the sun angle due to the time of day that the over-pass of the satellite occurred.  While these were 
not considered in the scope of this project, we note it to suggest that there is very little hope of 
achieving a perfect calibration between two sensors.
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Piece-wise Regression

 The consideration of piece-wise regression is employed to consider further 
explanation of the data sets, allowing smaller errors and data issues to be con-
sidered. This area has not been completely explored, however, some preliminary 
work has been done to show the possibility that it would have a significant im-
pact on the data set.  
 For analysis of the 2003 data set, by considering the individual observation 
numbers, an assumption was made that the data’s seasonal values per land type 
are similar values.  If dealing with multi-year data sets, a consideration into off-
setting seasonal conditions should be employed.  In addition, the second primary 
focus of moving to a piece-wise regression is to eliminate the need for higher 
order polynomial functions in the calculation of the data sets.  
 This work is preliminary as only a single year of data has been used.  If this 
area is to be considered further, a multiyear data set would be needed to give 
more data points, as well as deal with seasonal offsets.

DISCUSSION

 Within each land cover type, there appears to be a connection between the 
growing part of the season and a higher R2 for linear regressions.  There are most 
notably two exceptions to this generalization, the urban and the pasture hay 
land cover types.  While it is difficult to conclude any solid observations as to 

Figure 30. Aqua vs. Terra: Observations 9-18.  As we noted, in the growing season with the other 
sensor regressions, the growing season has better explanation.  It appears that this is similar to 
the same sensor type.  This suggests that there is definatley something greater than sensor calibra-
tion that is off, but includes other conditions that need to be accounted for.  However, this does 
show that the part of the season has an important impact on the regression calibration.
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what makes these two land covers different, one speculative answer could relate 
to the geographically diverse areas that the sample sites were taken from.  Both 
land covers had a wide range of sites taken primarily in the north to south fash-
ion.  This would suggest that the relation could involve another factor, namely 
latitude.  However, without more data, there is nothing certain as to what causes 
this.  
 Generally, the N17 satellite sensor had a greater amount of scatter when 
compared with either MODIS sensor than the N16 satellite sensor.  Also by 
looking at the comparison between Aqua and Terra, it is clear that even between 
the same sensors, there are factors that impede explanation, especially in the 
non-growing season.  The result from this is that it becomes apparent that some 
type of relationship exists between a growing and a non-growing time of the year.  
Furthermore, it appears that in certain groupings of land, different factors are 
influential at different times of the year. 
 For instance, the deciduous forest when looked at in a two-part regression 
allows for smaller groups of data that can more easily be reproduced.  It has 
however, become apparent through the examination of the data that the MODIS 
sensors tend to saturate at a 0.92 NDVI level.  Since the MODIS sensors typi-
cally find a higher value of NDVI than AVHRR, the MODIS sensor is not able 
to evaluate high levels of NDVI values.  The result is that in areas of extreme 
growth, such as forests, a ceiling is created for the MODIS NDVI values, causing 
a two-part regression being mandated to be used.  This is primarily the case in 
the forest areas over the non-forest areas due to the higher rates of growth.  In 
essence, the non-growing season/growing season relationship is far less a matter 
of time of the season, but rather a saturation problem of the sensor.  
 There is still strong evidence however, to support the need for a split regres-
sion in the examination of the evergreen forest land cover.  Such a split in this 
land cover does allow for better explanation of the growing season.  This does not 
solve the off-growing season problem; however, it would allow some seasonality 
metrics to be used with some modifications.  The correlation of the evergreen 
forest non-growing season’s high rate of scatter may have something to do with 
the problem of snow and unmasked clouds found in the non-forest land cover 
types.  
 It has generally been assumed that the most desirable NDVI values are the 
maximum values.  It has also been the assumption that things such as snow, wa-
ter, ice, smoke, haze, and smog would decrease the values of NDVI.  The result-
ing rationalization of the increased scatter in the evergreen forest results around 
the concept that during the non-growing season, some areas would still produce 
a high-level of NDVI due to the nature of the continual greenness.  However, if 
some areas were covered by snow or ice, and not masked out by the sensor, it is 
possible that the reduction of one sensor may be greater than the other, causing 
a scatter, which would be relatively unpredictable.
 This same concept then would apply to the non-forest land cover types 
which have a unique problem with the floor saturation level created on by the 
MODIS sensor.  The isolation of the floor effect to the off-season would suggest 
that the problem could be a result of snow and ice cover.  As the floor effect 
primarily occurred in land cover types that are relatively non-obstructed by snow 
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masking growth, the MODIS sensor lowered the NDVI values greater than the 
AVHRR sensor.
 The majority of the focus within studies has been dealing with artificially low 
NDVI values and attempting to correct them.  However, as alluded to earlier in 
the discussion, it has been shown in the forest land cover areas in section 3.2 that 
there are major issues with the comparison of extremely high NDVI levels with 
the MODIS sensor.  This issue was noted by [7], noticing that the initial twelve 
months of MODIS vegetation data some intensively measured test sites appeared 
to have a saturation level of 0.90 NDVI.  The problem clearly stated observes 
that, at extremely high values data is information lost, which exists extensively 
in the deciduous forest land cover but in the other forest types as well as row 
crops covers, is the result of the problem of the MODIS sensor saturating at 0.92 
NDVI.
 The problem of saturation raises an interesting and critical question.  By 
adjusting our data to match a sensor that cannot fully describe the differences be-
tween two levels of growth due to saturation, should we be creating a calibration 
that loses data?  The NDVI metric was created to work with AVHRR data and 
has been adapted for a number of sensors.  With the MODIS sensor, however, 
we have an additional problem of having a generally larger NDVI value at all 
data points.  This mixed with the saturation level of 0.92, will result in decreases 
of accuracy in high NDVI growth areas during the peak time of the year.  As 
the primary use of this data focuses on the higher growth time period, this loss 
of explanation may not give an accurate representation of the characteristics of a 
season.  Fixing this problem may need to be considered at the fundamental level 
by attempting to modify either the calculation of NDVI, or finding a way to 
remove the saturation level from the MODIS sensor.  While the MODIS sensor 
is not viewed to be the next platform for NDVI, the goal being the VIIRS sensor, 
the MODIS platform will allow for comparison of data that will be necessary in 
order to allow for continuity between AVHRR’s long history of data, and VIIRS 
continuing coverage of remote sensing issues. 
 Despite the problem of saturation however, there is still a considerable 
amount of data that can be gathered by employing some technique of adjust-
ment between legacy data and current data at non-maximum values of NDVI.  

CONCLUSION

 Through the evaluation of the data we have seen factors that improve the 
calibration of the AVHRR data to the MODIS data.  Most of the factors that 
have been found deal with MODIS NDVI values being reported as too low.  
Factors that have significant influence in the regressions include the need to 
mask clouds and buffering around clouds to deal with cloud interference as well 
as atmospheric moisture that is surrounding clouds and clouds not detected by 
the CLAVR algorithm.  In addition, although no direct data shows the benefit of 
using a snow mask, the affects of snow appear to be evident in the non-growing 
season parts of the year data.  
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 The primary focus of this study has been examining the effect of time peri-
ods on the calibration of the sensors.  As can be noticed in the data, the middle 
part of the year, which has been referred to as the growing part of the season has 
a relatively narrow collection of data running on the regression line.  However it 
should be noted that the edges of the season have characteristics of the season, as 
well as the off-season.  The reason for this is possibly related to a latitude based 
relation, as the different latitudes will effect the light reflections differently, which 
cannot be accounted for completely in simply a growing/non-growing season 
correction.  To further prove this would require a closer look at evaluating data 
based on metric derived values in a more dynamic sense.  
 The possibility of using a piece-wise regression may prove to be very useful 
in relating the data.  However, without more data, the results may not be able to 
be applied to a longer calibration based algorithm.  
 The main benefit of this study has shown that the effect of season based 
regression is a likely possibility for correctional based algorithms.  While more 
research into the breakdown of the season as well as adding additional factors 
such as geographic location may improve the results, there is clearly a need to 
utilize some type of adjustment based on the time period of the season.
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